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Abstract. In this paper we formul ate and analyse moving-boundary problems arising from the dissociative model
for impurity diffusion in a semiconductor. We consider one-dimensional surface-source and implant problems
and two-dimensiona diffusion under a mask edge. The diffused profiles which result exhibit a number of novel
features.
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1. Introduction

This paper is concerned with some moving-boundary problems arising from the dissociative
model for impurity diffusion. The dissociative mechanism is of substitutional-interstitial
type, the impurity existing mainly in the substitutional state (i.e. occupying lattice sites), but
diffusing only in its interstitial form. In the dissociative mechanism an interstitial impurity
atom becomes substitutional by occupying avacancy (an empty lattice site). This mechanism
has been used to describe many solid-state diffusion systems, including copper in germanium
and zinc in gallium arsenide (see, for example, Frank and Turnbull [1], Sturge [2] and Meere
et al. [3], to which we refer for further details of the mechanism). The appropriate equations
are given in one dimension by

ds . 0 9?%v 0 , 9%
E = —deS‘l‘deZU, 5(84‘0) _DU ﬁ’ 5(34‘2) _D’L ﬁ’ (1)

where s(z,t),v(z,t) and i(z, t) are the concentrations of the substitutional impurity atoms,
lattice vacanciesand interstitial impurity atoms, respectively. The surface of the semiconductor
correspondsto z = 0, whilez > Qisitsinterior. The constants D,, and D; arethe diffusivities
for the vacancies and interstitials, respectively, and &4y, and k45 are reaction constantsfor the
dissociative mechanism.

We shall be considering the solution to (1) subject to two sets of boundary and initia
conditions. We first consider a surface-source problem for which the boundary and initial
conditions are given by

i=1" v=0" on =0,
i— 0, v— o as x — +oo, 2
s=0,1=0,v=0v" & t=0,
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where the constants 7* and v* are the surface concentration of interstitial impurity and the
equilibrium vacancy concentration, respectively. We introduce the quantity
o kqri*v*

kar,

and consider the solution to (1) and (2) for the case i* = O(v*) with v* < s*. This limit
represents a physically relevant parameter regime and we shall show in Section 2 how it gives
rise to a moving-boundary problem, which we then solve analytically.

In Section 3 we consider the solution to (1), subject to boundary and initial conditions
appropriate to an implant diffusion. These are given by

0i

%zo,vzv on z=0,
@—m,@—m as 1z — +oo, @)
ox ox

s=0,i=F(z),v=0v" a t=0,

where v* is again the equilibrium vacancy concentration. We ignore implant damage effects.
These conditionscan model animplant diffusionwith F'(x) > 0beingtheinitial distribution of
implanted interstitial impurity. We shall scale the substitutional and interstitial concentrations
by i,,, where

b, = MaX F'
im Izaé( (:E)a

and for the problem considered here we assume that
im > V", 4%

so that there are regions where the concentration of implanted impurity exceeds the equilib-
rium vacancy concentration. In the limit we consider, which is equivalent to that studied in
Section 2, aninterstitial impurity atom tendsto turn substitutional assoon asit findsavacancy.
This property implies that interstitials and vacancies will not coexist at the same |ocation and
leads to a moving-boundary problem, with moving boundaries separating regions of negligi-
ble interstitial concentration from those of negligible vacancy concentration. We derive the
appropriate moving-boundary formulation for this implant problem and discuss some special
solutionstogether with more general qualitative properties. A related, but more complex prob-
lem of this type was considered in Meere [4] in which the substitutional atoms were allowed
to diffuse by a vacancy mechanism.

Section 4 is concerned with the corresponding limit of a two-dimensional surface-source
problem describing diffusion under a mask edge. We concludein Section 5 with some discus-
sion.

It should be noted that, while we shall refer to semiconductor applications throughout,
models of the type discussed here are much more generally applicable to (for example)
chemical reactionsin which two maobile species (; and v) react reversibly to form animmobile
product (s).
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2. Thesurface-source problem
2.1. FORMULATION AND BOUNDARY-LAYER ANALY SIS

We consider the solution to (1) subject to (2). We non-dimensionalise the equationsasfollows:

s v 1 -t _ T
_'U:_’L:._,t:_,$:—
*

s*’ v*’ i T VD;T’

where T is some representative time scale. The non-dimensional problem is now

S =

0s . 0 0%v 0 . 0%
ua——s-l-w, &(wsﬁ—sv)—ﬂs@, &(s-l-sz)—s@, (5)
1=1Lov=1 on =0,
1—0,v—>1 as z — +oo,

s=0,1=0,v=1 a t=0,
where
w=1/kqT, e =1"/s*, 3 =D,/D; and w =i"/v"

and where we have dropped the overbars. For the remainder of this section we assume that 4
is negligible and hence replace (5)1 by

s = 1v. (6)
The solution to the problem is then self-similar with
s = s(x/t2), v = v(z/t2), i = i(z/t2).

We now discussthe casee < 1. In thislimit there is aboundary layer at # = O(1) where
z=¢e27,anding = O(1) we pose

S~ /3\0(3}775)7 v~ 60(§7 t)a { N:L.\O(:fat)'

The leading-order equationsinz = O(1) are

S0 = 10D w@_ _8260 @_8_2% ©)
o= 0 ot " oz2’ ot 02’

and (7). and (7)3 imply that (from the boundary conditions on z = 0)
wip — g = w — . ®)

We note that in the linear term a(¢)2, which would in general appear on the right-hand side
of (8), we must have a(t) = 0 in order to match into an outer region discussed below. It then
follows that

io = {((w = B)? +4wp30)? + w — B} /2w,
to = {((«w— B>+ 4wp30)? — w + 4}/28

and we obtain the single nonlinear diffusion equation
dso 0

105
5 =55 (= 92+ aopso) 152). (10

9)
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Equation (10) isto be solved subject to
50=1 on z=0, 50— 0 a T — +00o, 5=0 a t=0, (11)

which compl ete the specification of the leading-order boundary-layer problem.
We now need to distinguish between the cases 5 > w and 8 < w, the behaviour of these
two cases being qualitatively different. It is clear from (9) and (11) that if 5 > w then

o= 1—w/B,ip—0 as 7 — +oo, (12)
whereasfor § < w
to—0,ig—1—f/w a 7 — +oo. (13)

We note that, as shown by (12)—(13), the inner solutions need not (and do not) satisfy the
conditions of (5) asz — +o0, because of the additional regions described below. A physical
interpretation of this behaviour is as follows. In z = O(1) the substitutional concentration s
is expected to be small, since not enough vacancies areinitially available for s to be of O(1).
It then follows from (6) that either 5 or v must also be small. If there are sufficient vacancies
initially available, or if they are able to diffuse sufficiently fast into a region of vacancy
depletion, then we may expect that v will remain O(1). The preceding analysis indicates that
the condition for thisis that 8 > w, i.e. that D,v* > D;i*. Conversely, if D;i*, then the
impurity interstitials diffuse sufficiently rapidly and in sufficient numbers that the vacancy
concentration is greatly depleted and we shall seethat v = O(¢) then holdsin z = O(1).
We now discuss the various casesin turn.

22. > w
Inz = O(1) we havethat s and 4 are exponentially small, but v = O(1) and we write
v ~ vo(z, 1)

to obtain the leading-order problem

o _ 5000
ot " 0z’
vw=1-w/f on z=0, vp—1 as z— +oo, vp=1 a ¢=0,

where we have obtained the boundary condition on z = 0 from matching with (12), which
givesthe outer limit of the inner solution. Hence

uozl—% erfc( (14)

277)
2VpBt)
23. f<w

2.3.1. Introduction

Inthis casethe asymptotic analysisleadsto amoving-boundary problem. Denoting the moving
boundary by = = ¢(¢; ¢), wefind that for x = O(1) we have

for 0<z<gq(tie): s=0(), v=0(),i=0(1),
for =z >q(t;e): v = O(1) with s and ¢ exponentially small.
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For x < g wewrite s = €5, v = 0 with
5~ §O($7t)7 U~ 50($,t), i~ iO(:Eat)

and obtain

- L. 030
S0 = ioTo, e 0, (15)
ot  9zx2’

andforz > ¢

(16)

v ~ vo(x,1t)
with
Ovg

%o
% =P &

To complete the specification of the moving-boundary problem coupling (16) and (17), we
must now consider atransition layer x = O(1), where z = q(t;¢) + e2z. This analysis will
aso berelevant later in the paper.

2.3.2. Thetransition-layer structure

We write
t 1+ . 1.4
g~ qo(t), s ~esy(z,t), v ~e2v)(z,t), i ~e2ig(z,t) (18)

for z = O(1) and hence obtain

s} 82v} dsb 9%}
T T I 0 a0 _ "0
So = g5 Vp» wqo B /6 922" q0 B 922" (19)
where o = dgo/dt. We now define
S (t) = lim s} (20)

Z——00
and, using sg,z’g — 0asz — +o0 andvg — 0asz — —oo, we have

vl _ il
%% —gost = 20, (21)
0z

This system of ordinary differential equations may be further integrated to yield (absorbing
the arbitrary translation of z into the specification of ¢(¢; ¢) at O(¢))

—wio(s)— S7) = 8

if = (2857 /mw) exp(—wS ™ i§#?/B) | erfe(—(wS™ /28) o) (22)
with

ng = w(ig + S Goz), 33) = igvg. (23)
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However, the required matching conditions for (16)—17) can be deduced directly from (21)
which implies that

8’00 + . Bio - L
B <%> = Tw (@) = wQO(SO) > (24)
where we have introduced the notation
(W)™ = lim u(z,t), (u)” = lim u(z,t),
mﬁq; Ty

where u isany function of x and ¢. These expressions could alternatively be deduced directly
from the conservation laws
02 ) L 0%

0
E(U—wi)zw(ﬁv—wi), _(§+Z):W'

2.3.3. The moving-boundary problem

We are now in a position to formulate our first moving-boundary problem. The quantities i,
v and ¢p are determined by

Oip 9% ) dvo 9?ug

io=1-p/w on z=0, io=0 a z=gq, =0 a z=qf,
ovg - Oig +

0(5) =~(3)

vp—1 a z — +oo, vw=1qg=0 a ¢t=0.

Using self-similarity and writing go = o/, we obtain the solution

i0=(1— B/w)(1 — erf(z/2V1)/ erf (a/2)), 0<z < avt, (25)
vo=1— erfc(x/2./pt)/ erfc(a/2v/B), x> o/t

where the constant « is determined by
(w — B) exp(a?/4p) erfc(a/2y/B) = VB exp(a?/4) erf (a/2), (26)

which hasa unique solution« > 0for0 < 8 < w.
The substitutional concentration 5q is determined from

50 ) - _ 1 (0~ o
W_O’ 0<z < qot); 30 = i (8:13) a z=q,
so that
20w B ep(—o?/d
0 Vraw erf(a/2)

In Figure 1 we plot a numerical solution for i together with the corresponding leading-order
asymptotic profilesin each of theregionsz = O(1),z = O(1) and z = O(1).

for 0<z < qo(t). (27)
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10°

Interstitials —

Figure 1.

From (26) and (27) we have

a~/m/B, 50~ 20/tww—LF) a —ow,

so in this limit the interface moves slowly, permitting a relatively large number of impurity
atoms to become substitutional, whereas

o~ ZIOQ%(w—B), So~1/w & w — +oo,

which impliesin dimensional termsthat s ~ v*, so that the interface moves rapidly and only
the vacancieswhich are present initially are available to be occupied by impurity.

24. B=uw
When 8 = w, the solutions to (9)—11) satisfy
S0~ 92 M2 Do~ 3T %, i0~3F % as T — +oo. (28)

For z = O(1) we havethat s and 7 are exponentially small and vg is given by (14), so that

vo = erf (%) : (29)

However, there is now also atransition region with z = ¢32* in which we write
2 ok 1y % . P
s ~e3sp(z™,t), v~ e3ug(z™,t), i ~ e3ig(x™, 1)
so that

o2y 0}
or*2 - ox*2’




8 JR Kingand M.G. Meere

and matching with (29) and into the boundary layer z = O(1) (in which it may be shown that
v—i=A(t;e)Z + O(e)

for some A whichis of O(a%)) we have

vy — ig = x* [/ TptL.

Since sg = igvy, it follows that

. 1 x*Z 4*% ¥ » 1 x*2 4*% ¥
=\ \\mm ) T T2\ ) T mm [

and s, satisfies the nonlinear, inhomogeneous diffusion equation

886 - 1’ _82 :E_*z + 4s?
ot 2 0x*2 7Bt %0 ’

36~9:13*_4t2 as z* =0T, sp—~0 as z" — +oo, so=0 a t=0.

NI

Asalready noted, the solution to thefull surface-source problemisself-similar and the solution
to this reduced problem is thus of the form s§ = sé(x*/t%).

3. Theimplant problem

3.1. FORMULATION AND INITIAL TRANSIENT

We now consider the solution to (1) subject to (3) and non-dimensionalise by writing
S=8/im, 0 =1i/im, 5 =0/, t=Dit/X?> T=2/X,F = F/ipn,

where X is a characteristic length scale of the initial distribution F'(x). We then obtain the
non-dimensional problem (dropping overbars)

95 _ ot 2( 4 )_68_21) 2(.,.-)_8_%
T T A VI A
X0 w=1 on 520 L0250 as 5400, (30)
or or or

s=0,i=F(z),v=1 a t=0,
where

p=D;/(kqr, X?), €=kq/(kqrv*), B=Dy/Di;, w=ip/v*
and

max F'(z) = 1.
>0

Before we begin our analysis of (30), it is worth noting two integrals of the above system
which are constant in time. An elementary calculation showsthat for all ¢

/Oo(i-l-s—F(x))d:L":O, /oo:r(v-l-ws—l)dx:Q (31)
0 0
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where (31); is simply a statement of conservation of impurity.

We note from (4) that w > 1 (for w < 1 no moving boundaries arise) and we shall again
take the limit » — O followed by ¢ — 0. We note, however, that in this case the assumption
that 1 < 1 in fact haslittle bearing on the rest of the analysis. There are two time scales to
consider. Thefirst is an initial transient with ¢ = O(1), where t = eut, on which negligible
diffusion occurs; the leading-order balanceis

0sg . 0 0 .
57 = lovo, 5 (wso + vo) = 0, 5 (so+10) =0,

with solution

(1—exp((1— wF(z))t))F(z)
wF(z) —exp((1— wF(x))t)
For given z, the behaviour of these solutions as¢ — +o0o depends on whether wF < 1 or
wF > 1.Wherever w F' < 1,theinitial concentration of interstitialsislessthan the equilibrium

vacancy concentration, so that vacanciesremain after these interstitials occupy substitutional
sites. From (32) we then have

S0 = , v0=1—wsq, ip = F(x) — so. (32

wF <1 sg—F,vg—1—wF,ig—0 a t— +oo.

However, where wF' > 1, the vacancies are all occupied before the impurity can all become
substitutional. From (32) we have

wF <1l sp— 1l/w,v9—0,ig > F—1/w as t— +4oo.
For ¢t = O(1) the domain thus splitsinto distinct regionsin which either v = O(1),i < 1lor
i = 0(1),v < 1. These regions are separated by moving boundaries, with narrow transition
layers describing the behaviour close to such interfaces.
3.2. THE MOVING-BOUNDARY PROBLEM: FORMULATION

We now discussthe behaviour for ¢ = O(1). Inregionsinwhichi < 1, which we shall denote
as v regions, we write

s ~ so(x,t), v~ vo(z,t), i ~ gig(x, 1)

toyield
= ds0 Ovo 9%
S0 = tovo, ot ot BWa (33)
whereasin regionsin which v < 1 (i regions) we write
s ~ so(z,t), v ~ evo(x,t), i ~io(z,1t)
togive
- dso dio _ 0%ig
S0 = tovo, or 0, ot or2’ (34)

Even though 0sp/0t = 0 in both cases, we cannot conclude that sg is fixed for al ¢. In
the transition layers at the moving boundaries s varies rapidly with ¢, so that sg is modified
wherever these interfaces move.
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We now determine the behaviour in these transition layers and therefore obtain conditions
on (33) and (34) at the moving boundaries. We again define z by = = q(t; €) + £3 7 and write

1 ) 1.
q~ qo(t), s ~ sg(z,t), v~ szvg(z,t), i~ 8228(Z,7f).

Assuming that ; < a%, we then recover the system (19). Defining

S™(t) = zﬂr_noo 32), ST(t) = ZETOO 33)
and, treating the case in which the region to the right of = = ¢ isan ¢ region and that to the
left av region (the results for the reverse case follow in an obvious fashion), we observe that
matching implies
i 3

—wio(sh — 1) = 5%, —o(sh — 51) = %. (35)
The solution to (35) may be written in terms of parabolic cylinder functions:
(i) S~ > S*,whichrequires o > 0.

1

b= (%5 =59)" Dossl0/D10).
it = 5 Dy1(0)/ (% (5 — s+>)§ D,(0),

with sh = ilol,v = —S7/(5~ = 5%) and ¢=-— <5 (S~ - S*)) doz-

(i) S~ < ST, whichrequires g < O.
b= 57,0/ (£ 157 - 57)" Dutc),

h=(Z(s7=59) Da(/D.(0).

w
1
with s = ifob,v = —ST/(ST—57) and ¢=- (% (57— S‘)) oz

The profiles in the transition layers thus depend on the direction in which the interface is
moving.

We are now in aposition to write down the moving-boundary problem. For smplicity, we
shall mainly discuss the case in which F' is monotonic increasing and bounded, being such
that (after theinitial transient) thereis asingle vacancy region adjacent to the surface. We note
that thisimplies that F'(+00) = 1 > 1/w. Animplant of this form isillustrated in Figure 2.
In practice, implant concentrations will decrease back to zero further into the semiconductor
and we shall mention the behaviour of such caseslater. In Figure 3 we illustrate the vacancy,
interstitial and substitutional profiles aswell as the moving boundary and transition layer, by
means of a numerical solution of (30). By matching with (35) we find that

io((50) — (0") = (22)", _ .
inl(s0) — (50)) = —6(52) -
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(b)

Figure 2.

2= 0(1)

. . . \ .
0 0.5 1 q(t) P 25

Figure 3.

We now have the following moving-boundary problem for i and vg

8’00 821)0
e 37)
vww=1—wF(z) a t=0, vp=1 on z=0, vo=0 on z=qo(t),

for z < qo(t), and

ot 0x2’
iop=F(z)—1/jw a t=0, io=0 on z =qot), (38)

io—~>1-1/w a z— +oo,

for 2 > qo(t). From (36) we see that

b(lr) ()
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Equations (37), (38) and (39) form the compl ete problem for ig, vg and qo.
We note that we can thus solve for g, vg and ¢ independently of sg, which is determined
from

% =0 for z<gqot) and z > qolt),
so=F(z) for z<g(0) and sp=1/w for z>qo(0) a t=0, (40)
1 /0T
+ _ [ .
(o) =G0~ = (52) -

the final condition of which shows that the substitutional profile is not constant in time.
The outer substitutional profile thus evolves in a curious way, the only point for which
0s0/0t is non-zero being = = qo(t). Hence the substitutional concentration at a point only
changesif go(t) visits that point. We also note that the outer substitutional concentration sq is
discontinuous at the boundary, with the jump in the concentration being proportional to the
slope of the intertitials at the right of the front (or, from (39), the slope of the vacancies at
the left of the front). Since (9i0/0z)™ is positive, sq is larger at values of z just visited by
qo(t) than at values about to be visited, whatever the sign of ¢o, which is to be expected. We
now discuss such behaviour in slightly more detail and then consider someillustrative special
cases.

(i) ¢ >0.
If ¢ > Ofor all ¢, then clearly (sg)™ = 1/w and from (40); it follows that (so) ™ > (so)™

=1
(the condition that go > O for (sg)~ > (so)™ is also required by (35), as noted above). The
substitutional profile has the form

F(z) . for 0<z < ¢o(0),
sole.t) = 4 Yot = (52) (o' (@) for an(©) <o < aolt), 2
1/w for = > qo(t),

wheret = qq (z) isthe time at which the moving boundary crosses the point z.
(i) go <O.

We now have (so)~ = F(qo) and (so)™ > (s0) ™. The substitutional profileis given by

F(x) ' for 0<z < qolt),
solot) = { 7o) = = (52) (g @) for aolt) <o < O @
1/w for = > qo(0),

It is not, however, possible for ¢o to be negative for all ¢. The boundary condition vg = 1
on z = O implies that eventually ¢o > 0 and that the solutions for ig, vg and go converge to
the similarity solution of Section 3.3.1 as¢ — +o0. Under such circumstances there will be
values of z which are visited by go(¢) more than once and the resulting profile for sg will
typically be rather complex.

A simple illustration of such behaviour, with ¢o < 0 for small time and go > O for large
time, can be given by considering the further limit 3 — 0. For sufficiently small ¢ we have
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go < 0 and the v region subdividesinto three with
vo~1—wF(x) asf — Owithz = O(1),0 < z < qq,
vo ~ (1 - wF(q0))(1 - exp(—qo(z — qo0)/B)) asp — Owithz = qo(t) + O(B),

together with a boundary layer 2 = O(B%) at the surface. The i region then decouples, with
(39) implying thatas 3 — 0
i .
w52~ —qo(l-wF(q) on w=qolt), so~L/w for z>qlt). (43

At some finite value of ¢ the moving boundary z = ¢g reaches the surface 2 = 0 (or, more
precisely, go becomes of O(/3)) and then on the much slower time scale T = 32t moves back
into the semiconductor, withas 3 — 0

vo ~ 1 —x/qo(T)

io~ (1—1/w)erf(X/2VT) for X =0(1), where X = fz,
for T'= O(1), and with

o~ VrT/(w— 1),

sothat g > 0.

3.3. THE MOVING-BOUNDARY PROBLEM: SIMILARITY SOLUTIONS
331 F(zr)=1

In this section we shall give two simple similarity solutionsto the moving-boundary problem,
the first corresponding to the special case in which F/(z) = 1in (37)—39). In both cases the
similarity variableisn = z/+/t.

We write qo(t) = v/t and it isthus clear that go > 0. The solution is then given by

o = 1, 2Aw—1) exp(—a?/4) o _ 1 Erfc(e/2y/B)
°7 Vraw  efc(a/2)

0= I S S

erf(a/2VB)
for » < av/t and
so = Lw, o= (1—1/w)(1— erfc(z/2V1)/ erfc(a/2)),
for z > a+/t. The constant « is determined by
(w — 1) exp(e?/4B) erf(a/2/B) = \/Bexp(c?/4) erfc(a/2).
Asalready noted, this solution describes the behaviour in the limit ¢ — +oo for more general
initial conditions.
3.3.2. Aninfinite-domain problem

We now consider a set of boundary and initial conditions which differ from the semi-infinite-
domain problems discussed above. The similarity solutions which result have a number of
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interesting features and the results are instructive with respect to the two-dimensional problem

discussed later. Specifically, we replace the boundary and initial conditionsin (5) by
v—11—-0 a z— —oo, v—11—1 a x— +oo,
s=0v=L1i=F(z) a t=0,

and we take F'(x) to be

_J0 for z<0,

Fle) = {1 for z > 0. (44)
and again we assume w > 1. Following the initial transient, we then have for ¢ = O(1) the
following moving-boundary problem. For —oco < = < go(t) thereisawv region with i < 1
and

9so _o Do _ 50%0
o ot " 0x2’
vw—1 a z— —o0o, vo=0 on =z =qot), (45)

whilein go(t) < = < +o00 we havean i region with v < 1 and

dso _o  Dio_ i
o ot 0x2’
io=0 on z=qot), io—>1-1/w a z — +oo, (46)

The problem is completed by the moving-boundary condition (39). Writing qo(t) = ¢v/t, we
then obtain the following similarity solution
erf(o/2v/B) — erf(z/2\/Bt)
v = , T < Vt, 47
° erfc(—p/2v/B) v (47)

and

o (v/2V1) — et (/2)

afc(p/2) , > pVt, (48)

io=(1— 1/w)

with ¢ determined by

(w — 1) exp(?/48) erfc(—p/2y/B) = v/ Bexp(¢?/4) erfe(p/2) . (49)

The substitutional concentrations behind and ahead of the front are again related by (40), and
here we have

(s0)* = (s0)” — 2

(1-1/w) exp(—o?/4)
Vre  eclp/2)

From (49) we see that ¢ = 0 for 8 = 3., where 3. = (w — 1)?, so the boundary is stationary
when the parameters ¢ and w satisfy this relationship. It is easily shown that for 5 < . we
have ¢ < 0, so the front movesto the left, whilefor g > (. we have ¢ > 0, the front moving
to theright.

If o > 0, then (sg)" = 1/w and

(s0)" = 1,21-1Yw) exp(—¢®/4)
w Ve erfe(p/2)
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We then have
0 for = <0,
s(xz,t) = { (s0)” for 0< < Vi, (50)
1w for x> eVt

If ¢ < Othen (sg)” = 0and

(o) — 20— 1) exp(=/)
Vreetde/2)

and
0 for 0<z < Vi,
s(z,t) = { (so)t for @Vt<z <0, (51)
1l/w for z>0.
It follows from (49) that
s
@Nm(ﬁ—ﬁc) as [ — [
Letting 3 — 31, we thus have that
_ Aw—-1)°
o~ G50
whileas 8 — (. we have
v 4(w — 1)2
(s0) (B — B) .

Hence, in the limit 3 — (., the substitutional concentration blows up at the front like
1/(8 — B.). If the front moves slowly, many interstitials are able to become substitutional
in the neighbourhood of the front, and there is a build-up of substitutionals behind the front
whose concentration is inversely proportional to the front speed. A more detailed analysis of

this behaviour requires consideration of the case 6 = . + 5%7, wherey = O(1), for which
the interior-layer behaviour is no longer given by (35). In this case the outer solutions are

< 0:vg = erf(—z/2y/B.t),

x>0 = (1-1/w)ef(z/2V1),
while the inner scalings are (cf. Section 2.4)

= s%x*, 5~ s_%sé(x*,t), v~ 5%1)6(05*,15), i~ s%iz‘,(x*,t). (52)
We then obtain

Bevg — wip = —(w — D)™ /vt +v/2w

(higher-order matching is required in order to determine the second term on the right-hand
side of this expression) and, using s§ = igvg, we find that s satisfies the somewhat unusual
nonlinear diffusion problem

1
s 1 9 w—1 , v\ L) 2
Bto = o 52 ((( — — w) —|—4w(w—1)230> ) ,

2w
so—0 as |z¥| — oo, s=0 a t=0, (53)
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Figure 4.

with

/ sp dz* = 2(w — 1)Vt/wy/T, / z*sh dr* = yt /2w
Thescaing s = O(s*%) in (52) indicatesthe unusual nature of the substitutional profile, with
asharp peak closeto = 0. A numerical solution for § = . isgivenin Figure 4.

3.4. MORE REALISTIC IMPLANTS

The special casesaready discussed give someindication of the variety of possible behaviours
which can occur. Here we briefly consider the more realistic casein which theimplant profile
F(z) in (30) decaysto zero as z — +oo and there are two v regions (0 < z < go(t) and
Qo(t) < z < 00, say). We note that, even if F'(z) issuch that thereisno v region near z = 0
att = 0, therewill beonefor ¢ > 0 because of the surface-boundary condition on v, and one
i region (qo(t) < = < Qo(t)). Since the 7 region contains at ¢ = 0 only a finite number of
interstitials, the moving boundaries ¢g and Qo will meet at some finite time, at leading order
the interstitials all having become substitutional. For times greater than this we havei <« 1
for al x and at leading order for ¢ = O(1) we have smply

2
ovg 0“vo 050 _y (54)

ot T ax2’ ot
without moving boundaries present. The substitutional s then redistribute on the much longer
timescaler = O(1), where T = ¢t, with
dso _ 0s0
or  0x2°

Our remaining comments will concern the further limit 8 — 0, which is again instructive
in this context. Taking the limitse — 0 and 5 — 0, we obtain at leading order the moving-

vg = 1, (55)
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boundary problem (cf. (43))

dio _ 0%ig

Ot 022 for qo(t) <z < Qo(t),

. dig . B

10 =0,w o —go(1 — wF(qo)) a z=qo(t), (56)
) 01 .

0 = Oaw % = _QO(]- - WF(QO)) a zr= QO(t) )

io=F(z) —1/w for ¢o(0) <z < Qo(0) a t=0,

with go < 0,Qo > 0. This formulation holds as long as qo > 0. If ¢ reaches zero, the
conditionson = = qo(t) are replaced by

io=0 a z=0. (57)

It should again be stressed that in the limit e — 0 with 3 = O(1), go remains positive.
However, taking the limits e — 0 followed by 5 — 0, we find that o may become of O(3)
in finite time, in which case the condition (57) becomes appropriate. When ¢o = O(f), it
follows from (40) that so becomes of O(1/) in aregion of thickness O(3), indicating that
substitutional concentrations close to the surface become very high; this type of, apparently,
uphill diffusion near the surface also arises in other contexts.

While the conditionsin (56) remain valid (i.e. while go > 0), it isreadily shown that

Qo(t) Qo(t)
/ (io + L/w — F(x)) da :/ #(io+ Ljw — F(z))dz = 0, (58)
ao(t) ao(t)

while, if (57) becomes appropriate, we have
Qo(t)
/ 2o+ 1w — F(z)) dz = 0. (59)
0

The significance of these expressionsis the following. Ast¢ — oo, it isfound that o decays
to zero exponentially fast and go(t) and Qo(t) approach constant values go(oco) and Qo(oo).
These values can be calculated exactly from (58) and (59), whereby we have

Qo(00) Qo(00)
do(0) > 0, (1/w — F(x)) dz = / #(Ljw — F(x)) dz = 0

go(0) go(0)
or

0(c0)
qo(o0) =0, /OQ z(l/w — F(z)) dz = 0.

Onthelonger timescale T = O(1), with T' = St, we have (cf. (54))

Bvo_azvo
oT  0x2’
vp=1 a z=0, vp—1 a = — +oo,

vo=0, 0< z < Qo(c0) a T =0,
vo=1—wF(z), Qo(oo) <z <00 a T =0,
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where there are no moving boundaries and for brevity we shall henceforth treat only the case
qo(oo) = 0. For x = O(1) wethen have

so = 1/w, 0 <z < Qo(c0); so = F(z), Qo(oo) <z < 00, (60)

with, as aready noted, aregion of very high substitutional concentration closeto =z = 0. The
substitutional impurity thus adopts a highly distinctive profile, including a region of almost
constant concentration, given in dimensional terms by s ~ »* (the equilibrium vacancy
concentration). Finally, on the even longer time scale r = O(1) we have (55) subject to

o { /OQO(OO> <F(g;) - %) dx}é(w) + %H(Qo(oo) — 1)

+ F(x)H(xz — Qo(c0)) a 7=0,
%zo a =0, so—~0 a z— 400,
or
where H is the Heaviside step-function and the initial condition follows from (60), the ¢-
function representing the impurity located in the narrow high-concentration region near the

surface (in which substitutional diffusion commenceswhent = O(/3?/¢)).

4. Two-dimensional surface-sourceproblem
4.1. FORMULATION AND BOUNDARY LAYER

This section is concerned with two-dimensional diffusion under a mask edge. This problem
has been discussed under a different limit in Meere et al. [5], where it was shown that the
dissociative mechanism can produce unusual types of diffused profiles exhibiting a ‘bird’'s
beak’. We shall see here that the current limit also leads to some unusual profiles, but of
a significantly different type. Such differences are potentially of value in the assessment of
diffusion mechanisms and parameter values experimentally.
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Figure 5 illustrates results from the numerical solution to the two-dimensional problem
(61) by giving interstitial profiles as functions of x for various values of y. A particularly
noteworthy, and somewhat surprising, feature of these is that for w = 3 the profiles (c)—
(e) exhibit interior maxima beneath the mask; by contrast, for w = 0.75 the profiles are
monotonically decreasing. Thistype of behaviour will be explained by the asymptotic analysis
given below.

The relevant two-dimensional initial-boundary-value problem takes the form

. 0 _ 2 0 N o2
s =iv, % (ws + ev) = eV, pr (s + ei) = eV“i,

. i
v=21i=1 on =0,y >0, u=1,%=0 on z=0,y<0,
v—=>11—-0 azxr—+oc0 O y— —00, (61)
@%O,@%O as y— +oo, v=1:1=0 a ¢t=0.
Ay Ay

Here z = 0 is again the semiconductor surface, with y > 0 representing a window which
contains an impurity source and y < O being covered by a mask which is impermeable to
impurity. The behaviour asy — +oo is given by the one-dimensional problem of Section 2.
A more detailed description is given in [5]. The solution takes the self-similar form

s = s(@/t2,y/t7), i = i(x/t2, y/12),0 = v(z/t2,y/t2).

A boundary layer occursnear » = 0 for y > 0 with, asin Section 2.1,
1
2

T =e2%, 5~ S0(Z,1), v ~ Do(Z, 1), i ~ io(E, 1),

the leading-order solution being given by (9)—11). The results (12)—<13) again describe the
matching out of the boundary layer, so we must also distinguishthecases§ > w and f < w
here.

42. B> w

We again start with the simpler case in which moving boundaries do not arise. Inz = O(1),
s and 7 are exponentialy small and, writing v ~ vo(z, y, t), we have

%_ 821)o+821)o
ot or2 oy )’
Uozl—8 on z=0,y>0,v9=1 on z=0,y<0,

p
Ovg
vw—1 a z— 400 or y—>—oo,a——>0 as y — oo,
Y

=1 a t=0,

with solution

vo=1-— ﬁ z:\/ﬁ et <l-|- erf <% u)) du. (62)
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There isafurther inner region close to the mask edge with

© =1, y = £27, s ~ 50(Z, 1), v ~ To(Z, 1), i ~ io(Z, 7. 1), (63)

with
_ I3 _ _

S0 = %0V0, % = Vzio, Vz(wio—ﬁﬁo) =0,

_ = ~ ~ _ az0 ~ ~

o=11=1 on z=0,4>0,79=1, %:0 on =0,y <0,

8—UAO—>O,8—ZLJ—>O as Y — +oo, (64)

oy oy

ao~1—:—ﬁ <0+g>,§o—>0d3f’—>+oo,97ég,

wherez = rcosf, y =7 = siné.

43. f<w
4.3.1. The moving-boundary problem

Inz,y = O(1) the following moving-boundary problem may be deduced in amanner similar
to those of the previous sections; we denote the moving boundary by ¢ = o (z, y).

iregion (t > o(z,y))
s~ 850(13,.%75)7 v~ 550(%%75)7 i~ iO(xayat)'
dip 0%y  0%g
9t o2 + 3_y2 ) (65)
io=1—p0F/w on z=0,y>0,

io~ (1—B/w)(1—erf(z/2Vt)/ erf(a/2)) as y — 400, 0< z < aVt,
where « is given by (26), with
030

5L =0 (66)

50 = 10Uo,

v region (t < o(z,y))
v ~ wvo(z,y,t),s and i are exponentially small.

% B 9% N %o
ot ox2 oy )’

w=1 on z=0y<O, (67)
v—+1 as z— 400 O y— —o0,

vo ~ 1 — erfc(z/2/Bt)/ erfc(a/2V/B) as y — +o0, x> av/t.
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We now use ()" and ()~ to denote the limits as the moving boundary is approached from
within the » region and the 7 region, respectively. The moving-boundary conditions which
couple (65) and (67) and compl ete the specification of the moving-boundary problem are then

" =0, 00" =0,6(20) = u (%) on 1=ota), (69

where 2 = % - V denotes the outward normal derivative. Finally, we also have

(50) = —(Vo - Vip) ", (69)

which may alternatively be written in the form

- 0io\\ ~
o) = (52) . (70)
whereV,, = 1/|Vo| denotesthe outward normal velocity of themoving boundary. A schematic
of a possible form for the moving boundary is indicated in Figure 6. It should be noted that
the moving boundary meets the surface (z = 0) at the edge of the mask (x = 0,y = 0).

Before proceeding to describe the remainder of the asymptotic structure, we first note a
reformulation of the moving-boundary problem as a nonlinear diffusion problem and then
describeitslocal behaviour near the mask edge.

If we introduce

¢ = wigp — Pvo,
we obtain the fixed-domain problem

9
ot
c=w—-p0 on z=0,y>0, c=—0 on z=0,y<0, (71)

(B(c) = Ve,
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c——f a8 z— +oo0ry — —o0,
Jc
— =0 as y— +oo, c=—pF a t=0,
dy
where
[ ¢ >0
q)(c)_{c/ﬁ ¢ <0,

Is a piecewise linear function. If (71) is solved, then the moving boundary is given by the
concentration contour ¢ = 0. In the special case 5 = 1, (71) islinear and has solution

- Y > _“2<1+erf<y ))d —1.
‘=T z/2VE ¢ 2 s
Thelocal behaviour closeto 2z = 0, y = 0 will play an important role in the remainder of
the analysis. It is readily shown that
Bug — wig ~ B — w(f + 7/2) /7 + ~(t)r cose (72)

asr — 0, wherex = rcos,y = rsinf and (t) = ﬂyot*%, the constant -y being determined
globally. The moving boundary thus takes the form

0 ~ 0o + 0/ (wt2) rsin(rB/w) as r— 0, (73)
where
0o =m(B/w—3).

The angle 6y at which the moving boundary comes into the mask edge is thus completely
determined by the local analysis. We note that, as 3/w — 17, the window 6 = 7/2 is
approached, whereas for 3/w — 01 the mask § = —/2 is approached. The schematic of
Figure 6 correspondsto the case 8 < 2w in which the moving boundary bends underneath the
mask.

Using self-similarity, we deduce from (66) that

So=50(#),
and, using (69) and (73), we may show
50 ~ 2myg Sin?(rB/w) /{w?(0 — 60)3} as 6 — 67 . (74)

This ‘pile-up’ of substitutionals just behind the moving boundary is a consequence of the
velocity of the boundary tending to zero as» — 0 (cf. Section 3.3.2). We have

Vi ~ WSin(Wﬁ/w)fyorz/(Zwt%) asr — 0. (75)
Thefact that 59 becomes unbounded 8 — 6y indicates the need for an additional region close
to 8 = 6y, which we discuss next.

4.3.2. Other regions

There are three regions which we have not described so far. The transition layer located about
the moving boundary is, away from the mask edge, one-dimensional at leading order and is
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thus again of the form (21)—23). The remaining two regions need to be discussed in more
detail. Both are close to the mask edge and the first relates to the substitutional pile-up just
referred to, the relevant scalings being

9=90+8%¢,7‘=8%7"* with

5~ e8SH(rT, d, 1), v ~ eBUG(rT, b, 1), i ~ eSiL(r*, B, 1)
and we have
dsyg B %y 0sh 1 0%

Yot T r20¢2 ot 12 0g2

* sk ok
S0 = 2oY0;

By appropriate matching (including at O(s%)) —we omit details) we then find that

Bug — wiy = —wd/m + Yor* sin(nB/w)/t2

so we have

. . 2 : .
b= > {((gao— ”’:7" sm(wﬁ/w)) -|-4w636> +‘§¢—”:g sn(wﬂ/w)} :

* 2 % *
v = % {((; 6— ”’Z sin(ﬂﬁ/w)> + 4wﬁs;;> ~Zg+ 7:: sin(wﬁ/w)} ,

together with the nonlinear diffusion problem (cf. (53))

osy 1 P o ’ :
- (G o) vans] )

sp— 0 as |p| — oo, sp=0 a t=0. (76)

The solution to (76) is of the form
56 = so(d, t/r*).

We a'so note the integral results

1
S t S 2yot?
/ 50 dop = 2 [ $so dp = Zi* sn(rB/w) .

Ast — 0, or equivaently asr* — +o0, the solution to (76) takes the form

NIlw

(¢ — myor* Sin(mf/w) /(wt?))t 3

for z* = O(1), which matches into the transition layer about the moving boundary, and the
form

56 ~ 2mg S (n B fw) [ (w?9°) (77)

S0 ~ t%f(z*)/r*?’ where z2* =r*
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for ¢ = O(r*/t2) with t2¢/r* > 7o Sin(73/w) Jw, which matches with (74). We note that
(77) holds as ¢ — 4oo for al ¢ > 0. Ast — +oo, or equivalently as r* — 0, we have
self-similar behaviour of the form

5§~ tig(r ig/t3)/r*3 for ¢ =O(t3/r*5) (78)

where g(n) isan evenfunction of n, which matchesinto thefinal region whichwe now discuss.
This is the mask-edge region in which the scalings (63) again hold, as does (64), except
that the condition as7 — +oo is replaced by
To ~ 1—w(@B) O+ 7/2), i9—0 as 7— +oo, —7w/2<6<bp, 79
To— 0, ig~7m Y0+7/2)—f/w 8 F— 400, BOy<b<m/2.
Thefar-field behaviour of 5q isof someinterest, 5o becoming exponentially small as7 — +oco
for =5 <0 <fpandfy < 0 < 7, but only algebraically small for § = 6o, corresponding to
matching with (78), with

5o~ t3g(F3(0 — 00)/t3) /73 as 7— +oo with 0— 6= O(F 3). (80)

4.4. DISCUSSION

Inthelimit discussedin[5], correspondinginthecurrent notationtow > 1withe = O(1) (less
restrictively, theresultsof [5] also apply for ¢ < 1 providedthat ¢ > 1/w), impurity contours
stretch asubstantial distance beneath the mask (in the —y direction), leading to ‘bird’s-beak’
profiles characteristic of greatly enhanced lateral diffusion. By contrast, as Figure 6 indicates,
the current limit can lead to contours which curve back towards the edge of the mask. Such
results are confirmed by numerical solution of the full model and our main purpose in this
sectionisto give someindication of how thesetwo apparently contradictory typesof behaviour
(in comparison with linear diffusion, enhanced and reduced impurity concentrationsalong the
bottom of the mask) can arise from the same mechanism.

Asindicated in [5], acomplete description of the transition between the two casesrequires
consideration of a number of different relationships between the two small parameters ¢ and
1/w, and we shall not pursue the details. However, it is possible to show that the impurity
contours at high concentration are qualitatively similar to those of [5] (although the details
of the limit problems may differ) whenever £ and 1/w are both small, no matter how much
smaller theformer isthan the latter. Therefore by analysing the mask-edgeregion z, y = O(1)
introduced abovein thelimit w — oo, wewill be able to gain understanding of the transition.

We thus consider the behaviour of (64), with the condition as7 — +oc replaced by (79),
inthe limit w — oo. The details are rather complicated, the asymptotic structure subdividing
into seven regions, a number of which are governed by unusual types of non-local nonlinear
diffusion problem. However, for the purposes of this discussion it suffices to describe one of
these regions only. It is convenient first to introduce the small parameter § = 3/w.

Therelevant region isaboundary layer with scalingsz = O(1),Y = O(1) whereY = 67,
with ¥ < 0, and, writing s ~ 6So(z,Y,t) asd — 0, we obtain the surface-concentration-
dependent nonlinear diffusion problem

1
2 2
0So _ 1 &° & -
A = 7 5 - ~_ Y -

5 = 3 972 {<7r(—Y)+O‘( 1) 1) +4So} :
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< 8SO O‘(?a) =~
S ZQY,t,—A:— = at fL':O, 81
0o=a(Y,t) R oY) (81)
So—0 a T — +oo, So=0 a t=0,

which determinesthe surface concentration a(Y /¢2) aswell as So(2/t2, Y /¢2). For the other
variables, we writevg ~ Vo(Z, Y, t),i0 ~ 6Ip(Z,Y,t) asé — 0, with

So = IV, Ip = Vo—l—ﬂ'ilf/(—?) +a—1.

We note from (81) that

/0°° Sodi = t/m(—V), /0°° #Sodi =t (82)
The problem (81) has the following asymptotic behaviour.
(i) AsY — d,,

an~t)(1202), So~t)/(x272) ™ for 7 =0(-Y). (83)

(i) AsY — —o0, a becomes exponentially small and

Sot3/(~Y)3g((@ + nY)t 3 (=Y)3) for & =m(-Y)+O(t3(-Y)3). (84)
We may therefore deduce the following results, which hold for fixed t = O(1).

(i) For given small |17|, Sp hasits maximum at the surface 7 = 0 and decaysrapidly into the
semiconductor (see (83)). Impurity contours at high concentrations extend much further in
the —y direction than in the z direction (cf. [5]). Contours with s = O(1) stretch a distance
—y=0(6" %) under the mask, though we omit details for this region.

(i) For given large |17|, Sp is exponentially small on the surface z = 0 and has an interior
maximum close to the line z = w(—?) (see (84)); this location is implicit in the integral
relations (82) and correspondsto taking thelimit 6 — 0in 6 ~ 6.

It ispossibleto arguethat theregionr* = O(1) discussedin Section4.3.2,inwhich6 ~ 6y
and where substitutional concentrationsarerelatively large, representsarotation of the* bird's-
beak’ effect occurringin [5] fromimmediately beneath themask (i.e.fromé = —7)toanangle
0 = 0p. Asw increases (and hence fy decreases), thelocal maximum movestowardsthe mask,
and eventually the limit of [5] is recovered. Thelocal pile-up of substitutional impurity arises
from the presence of vacancies made available through surface generation at the mask. In [5]
(Wherew > 1,¢ = O(1)) sufficient impurities diffusing in that surface-generated vacancies
are consumed by impurity interstitials right up to the surface, so that the substitutional peak
occursthere. In the current case (¢ < 1,w = O(1)) lessimpurity is present, so that vacancies
are ableto diffuse further from the surface before encountering an interstitial (and, conversely,
interstitials are consumed by vacancies before they can reach the mask), leading to an offset
of the substitutional peak from the surface by an angle g + 7/2 = 73/ w.

5. Discussion

We first summarise some of the noteworthy features of the diffused profiles predicted by the
results obtained here.
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(1) Section 2.

In the surface-source problem there isaclear distinction between the case D, v* > D;i* in
which the impurity concentration becomes negligible in the narrow surface region z = O(1)
andthecase D,v* < D;i* inwhichtheimpurity penetrates much further and the substitutional
profilecontainsaregion of amost constant concentration (given by (27)). If wevary thesurface
concentration ¢*, the expression (27), in principle, provides ameans of obtaining information
experimentally about parameters which are not susceptible to direct measurement. It isworth
emphasizing that a qualitative change in the form of the impurity profile is predicted as* is
increased above D, v* / D;. We note that, although the dissociative mechanism is mediated by
vacancies, the impurity is thus able to diffuse much further when sufficiently few vacancies
are available (i.e. when v* < D;i*/D,), since interstitials are then able to penetrate further
before encountering a vacancy.

(2) Section 3.

In theimplant case the moving boundaries can movein either direction and the qualitative
appearance of the substitutional profile (which exhibits regions of rapid variation around the
moving boundaries) depends strongly upon this. The results of Section 3.3.2 indicate the
possibility of very high substitutional concentrationscloseto aslowly moving interface; those
of Section 3.4 imply that the substitutional profile may exhibit high concentrations near the
surface with aregion of almost constant concentration further in. These are very distinctive
types of profile and experimental results consistent with at |east the latter are available.

(3) Section 4.

We have shown here that the ‘bird’s-beak’ profiles of [5] (which are similar to types
which are observed experimentally) do not occur for all the relevant parameter regimes for
the dissociative model. The substitutional profiles of Section 4.3 are again highly distinctive,
exhibiting a region of significantly enhanced concentration in a particular direction § = 6y
close to the surface. Such predictions (as well as those indicated above) are potentialy of
valuein clarifying which diffusion mechanismsare operating in practice. For example, ‘bird's-
beak’ structures appear to be much more robust for the kick-out mechanism (the other basic
substitutional-interstitial mechanism, analysed by asymptotic methodsin Meereand King [6])
than for the dissociative. Thealternative type of behaviour outlined in Section 4 doesnot occur
for kick-out and its observation would thus be indicative of the dominance of the dissociative
mechanism.

We conclude by noting that this paper appears to represent the first instance where
substitutional-interstitial models for solid-state diffusion have been formulated as moving-
boundary praoblems. While the moving-boundary problems derived here are of afairly simple
type, it should be noted that the resulting formulations involve some important features
(notably the determination of the leading-order substitutional profile) which do not occur in
more familiar moving-boundary problems. Moving-boundary formulations are also applica-
ble to much wider classes of diffusion mechanism, though the resulting problems may be
significantly more complex (see [4]). The results of this paper open the way for the analysis
of these more complicated models.
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