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Abstract. In this paper we formulate and analyse moving-boundary problems arising from the dissociative model
for impurity diffusion in a semiconductor. We consider one-dimensional surface-source and implant problems
and two-dimensional diffusion under a mask edge. The diffused profiles which result exhibit a number of novel
features.
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1. Introduction

This paper is concerned with some moving-boundary problems arising from the dissociative
model for impurity diffusion. The dissociative mechanism is of substitutional-interstitial
type, the impurity existing mainly in the substitutional state (i.e. occupying lattice sites), but
diffusing only in its interstitial form. In the dissociative mechanism an interstitial impurity
atom becomes substitutional by occupying a vacancy (an empty lattice site). This mechanism
has been used to describe many solid-state diffusion systems, including copper in germanium
and zinc in gallium arsenide (see, for example, Frank and Turnbull [1], Sturge [2] and Meere
et al. [3], to which we refer for further details of the mechanism). The appropriate equations
are given in one dimension by

@s

@t
= �kdLs+ kdRiv;

@

@t
(s+ v) = Dv

@2v

@x2 ;
@

@t
(s+ i) = Di

@2i

@x2 ; (1)

where s(x; t); v(x; t) and i(x; t) are the concentrations of the substitutional impurity atoms,
lattice vacancies and interstitial impurity atoms, respectively. The surface of the semiconductor
corresponds to x = 0, while x > 0 is its interior. The constantsDv andDi are the diffusivities
for the vacancies and interstitials, respectively, and kdL and kdR are reaction constants for the
dissociative mechanism.

We shall be considering the solution to (1) subject to two sets of boundary and initial
conditions. We first consider a surface-source problem for which the boundary and initial
conditions are given by

i = i�; v = v� on x = 0;
i! 0; v ! v� as x! +1;

s = 0; i = 0; v = v� at t = 0;
(2)
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where the constants i� and v� are the surface concentration of interstitial impurity and the
equilibrium vacancy concentration, respectively. We introduce the quantity

s� =
kdRi

�v�

kdL

and consider the solution to (1) and (2) for the case i� = O(v�) with v� � s�. This limit
represents a physically relevant parameter regime and we shall show in Section 2 how it gives
rise to a moving-boundary problem, which we then solve analytically.

In Section 3 we consider the solution to (1), subject to boundary and initial conditions
appropriate to an implant diffusion. These are given by

@i

@x
= 0; v = v� on x = 0;

@i

@x
! 0;

@v

@x
! 0 as x! +1;

s = 0; i = F (x); v = v� at t = 0;

(3)

where v� is again the equilibrium vacancy concentration. We ignore implant damage effects.
These conditions can model an implant diffusion withF (x)� 0 being the initial distribution of
implanted interstitial impurity. We shall scale the substitutional and interstitial concentrations
by im, where

im � max
x�0

F (x);

and for the problem considered here we assume that

im > v�; (4)

so that there are regions where the concentration of implanted impurity exceeds the equilib-
rium vacancy concentration. In the limit we consider, which is equivalent to that studied in
Section 2, an interstitial impurity atom tends to turn substitutional as soon as it finds a vacancy.
This property implies that interstitials and vacancies will not coexist at the same location and
leads to a moving-boundary problem, with moving boundaries separating regions of negligi-
ble interstitial concentration from those of negligible vacancy concentration. We derive the
appropriate moving-boundary formulation for this implant problem and discuss some special
solutions together with more general qualitative properties. A related, but more complex prob-
lem of this type was considered in Meere [4] in which the substitutional atoms were allowed
to diffuse by a vacancy mechanism.

Section 4 is concerned with the corresponding limit of a two-dimensional surface-source
problem describing diffusion under a mask edge. We conclude in Section 5 with some discus-
sion.

It should be noted that, while we shall refer to semiconductor applications throughout,
models of the type discussed here are much more generally applicable to (for example)
chemical reactions in which two mobile species (i and v) react reversibly to form an immobile
product (s).
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2. The surface-source problem

2.1. FORMULATION AND BOUNDARY-LAYER ANALYSIS

We consider the solution to (1) subject to (2). We non-dimensionalise the equations as follows:

s =
s

s�
; v =

v

v�
; i =

i

i�
; t =

t

T
; x =

xp
DiT

;

where T is some representative time scale. The non-dimensional problem is now

�
@s

@t
= �s+ iv;

@

@t
(!s+ "v) = �"

@2v

@x2 ;
@

@t
(s+ "i) = "

@2i

@x2 ; (5)

i = 1; v = 1 on x = 0;
i! 0; v ! 1 as x! +1;

s = 0; i = 0; v = 1 at t = 0;

where

� = 1=kdLT; " = i�=s�; � = Dv=Di and ! = i�=v�

and where we have dropped the overbars. For the remainder of this section we assume that �
is negligible and hence replace (5)1 by

s = iv: (6)

The solution to the problem is then self-similar with

s = s(x=t
1
2 ); v = v(x=t

1
2 ); i = i(x=t

1
2 ):

We now discuss the case "� 1. In this limit there is a boundary layer at bx = O(1) where

x = "
1
2 bx, and in bx = O(1) we pose

s � bs0(bx; t); v � bv0(bx; t); i � bi0(bx; t):
The leading-order equations in bx = O(1) are

bs0 = bi0bv0; !
@bs0

@t
= �

@2bv0

@bx2 ;
@bs0

@t
=

@2bi0
@bx2 ; (7)

and (7)2 and (7)3 imply that (from the boundary conditions on x = 0)

!bi0 � �bv0 = ! � �: (8)

We note that in the linear term a(t)x, which would in general appear on the right-hand side
of (8), we must have a(t) = 0 in order to match into an outer region discussed below. It then
follows that

bi0 = f((! � �)2 + 4!�bs0)
1
2 + ! � �g=2!;

(9)bv0 = f((! � �)2 + 4!�bs0)
1
2 � ! + �g=2�

and we obtain the single nonlinear diffusion equation

@bs0

@t
= �

@

@bx
�
((! � �)2 + 4!�bs0)

� 1
2
@bs0

@bx
�
: (10)
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Equation (10) is to be solved subject to

bs0 = 1 on bx = 0; bs0 ! 0 as bx! +1; bs0 = 0 at t = 0; (11)

which complete the specification of the leading-order boundary-layer problem.
We now need to distinguish between the cases � > ! and � < !, the behaviour of these

two cases being qualitatively different. It is clear from (9) and (11) that if � > ! then

bv0 ! 1� !=�; bi0 ! 0 as bx! +1; (12)

whereas for � < !

bv0 ! 0; bi0 ! 1� �=! as bx! +1: (13)

We note that, as shown by (12)–(13), the inner solutions need not (and do not) satisfy the
conditions of (5) as x! +1, because of the additional regions described below. A physical
interpretation of this behaviour is as follows. In x = O(1) the substitutional concentration s

is expected to be small, since not enough vacancies are initially available for s to be of O(1).
It then follows from (6) that either i or v must also be small. If there are sufficient vacancies
initially available, or if they are able to diffuse sufficiently fast into a region of vacancy
depletion, then we may expect that v will remain O(1). The preceding analysis indicates that
the condition for this is that � > !, i.e. that Dvv

� > Dii
�. Conversely, if Dii

�, then the
impurity interstitials diffuse sufficiently rapidly and in sufficient numbers that the vacancy
concentration is greatly depleted and we shall see that v = O(") then holds in x = O(1).

We now discuss the various cases in turn.

2.2. � > !

In x = O(1) we have that s and i are exponentially small, but v = O(1) and we write

v � v0(x; t)

to obtain the leading-order problem

@v0

@t
= �

@2v0

@x2 ;

v0 = 1� !=� on x = 0; v0 ! 1 as x! +1; v0 = 1 at t = 0;

where we have obtained the boundary condition on x = 0 from matching with (12), which
gives the outer limit of the inner solution. Hence

v0 = 1� !

�
erfc

�
x

2
p
�t

�
: (14)

2.3. � < !

2.3.1. Introduction

In this case the asymptotic analysis leads to a moving-boundary problem. Denoting the moving
boundary by x = q(t; "), we find that for x = O(1) we have

for 0 < x < q(t; �) : s = O("); v = O("); i = O(1);
for x > q(t; ") : v = O(1) with s and i exponentially small.
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For x < q we write s = "~s, v = "~v with

~s � ~s0(x; t); ~v � ~v0(x; t); i � i0(x; t)

and obtain

~s0 = i0~v0;
@~s0

@t
= 0; (15)

@i0

@t
=

@2i0

@x2 ; (16)

and for x > q

v � v0(x; t)

with

@v0

@t
= �

@2v0

@x2 : (17)

To complete the specification of the moving-boundary problem coupling (16) and (17), we
must now consider a transition layer x = O(1), where x = q(t; ") + "

1
2 z. This analysis will

also be relevant later in the paper.

2.3.2. The transition-layer structure

We write

q � q0(t); s � "s
y
0(z; t); v � "

1
2 v
y
0(z; t); i � "

1
2 i
y
0(z; t) (18)

for z = O(1) and hence obtain

s
y
0 = i

y
0; v

y
0; �! _q0

@s
y
0

@z
= �

@2v
y
0

@z2 ; � _q0
@s
y
0

@z
=

@2i
y
0

@z2 ; (19)

where _q0 � dq0=dt. We now define

S�(t) � lim
z!�1

s
y
0 (20)

and, using sy0; i
y
0 ! 0 as z ! +1 and vy0 ! 0 as z ! �1, we have

�! _q0(s
y
0 � S�) = �

@v
y
0

@z
; � _q0s

y
0 =

@i
y
0

@z
: (21)

This system of ordinary differential equations may be further integrated to yield (absorbing
the arbitrary translation of z into the specification of q(t; ") at O("))

i
y
0 = (2�S�=�!)

1
2 exp(�!S� _q2

0z
2=�)= erfc(�(!S�=2�)

1
2 _q0z) (22)

with

�v
y
0 = !(i

y
0 + S� _q0z); s

y
0 = i

y
0v
y
0: (23)
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However, the required matching conditions for (16)–(17) can be deduced directly from (21)
which implies that

�

�
@v0

@x

�+
= �!

�
@i0

@x

��
= ! _q0(~s0)

�; (24)

where we have introduced the notation

(u)+ = lim
x!q+0

u(x; t); (u)� = lim
x!q�0

u(x; t);

where u is any function of x and t. These expressions could alternatively be deduced directly
from the conservation laws

@

@t
(v � !i) =

@2

@x2 (�v � !i);
@

@t
(~s+ i) =

@2i

@x2 :

2.3.3. The moving-boundary problem

We are now in a position to formulate our first moving-boundary problem. The quantities i0,
v0 and q0 are determined by

@i0

@t
=

@2i0

@x2 ; 0 < x < q0(t);
@v0

@t
= �

@2v0

@x2 ; x > q0(t);

i0 = 1� �=! on x = 0; i0 = 0 at x = q�0 ; v0 = 0 at x = q+0 ;

�

�
@v0

@x

��
= �!

�
@i0

@x

�+
;

v0 ! 1 as x! +1; v0 = 1; q0 = 0 at t = 0:

Using self-similarity and writing q0 = �
p
t, we obtain the solution

i0=(1� �=!)(1� erf(x=2
p
t)= erf(�=2)); 0 < x < �

p
t; (25)

v0=1� erfc(x=2
p
�t)= erfc(�=2

p
�); x > �

p
t;

where the constant � is determined by

(! � �) exp(�2=4�) erfc(�=2
p
�) =

p
� exp(�2=4) erf(�=2); (26)

which has a unique solution � > 0 for 0 < � < !.
The substitutional concentration ~s0 is determined from

@~s0

@t
= 0; 0 < x < q0(t); ~s0 = �

1
_q0

�
@i0

@x

��
at x = q�0 ;

so that

~s0 =
2(! � �) exp(��2=4)p

��! erf(�=2)
for 0 < x < q0(t): (27)

In Figure 1 we plot a numerical solution for i together with the corresponding leading-order
asymptotic profiles in each of the regions bx = O(1); x = O(1) and z = O(1).
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Figure 1.

From (26) and (27) we have

� �
q
�=�; ~s0 � 2�=�!(! � �) as � ! !�;

so in this limit the interface moves slowly, permitting a relatively large number of impurity
atoms to become substitutional, whereas

� � 2 log
1
2 (! � �); ~s0 � 1=! as ! ! +1;

which implies in dimensional terms that s � v�, so that the interface moves rapidly and only
the vacancies which are present initially are available to be occupied by impurity.

2.4. � = !

When � = !, the solutions to (9)–(11) satisfy

bs0 � 9bx�4t2; bv0 � 3bx�2t; bi0 � 3bx�2t as bx! +1: (28)

For x = O(1) we have that s and i are exponentially small and v0 is given by (14), so that

v0 = erf
�

x

2
p
�t

�
: (29)

However, there is now also a transition region with x = "
1
3x� in which we write

s � "
2
3 s�0(x

�; t); v � "
1
3 v�0(x

�; t); i � "
1
3 i�0(x

�; t)

so that

@2v�0
@x�2 =

@2i�0
@x�2 ;
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and matching with (29) and into the boundary layer bx = O(1) (in which it may be shown that

v � i = A(t; ")bx +O(")

for some A which is of O("
1
2 )) we have

v�0 � i�0 = x�=
p
��t:

Since s�0 = i�0v
�
0 , it follows that

v�0 =
1
2

8<
:
 
x�2

��t
+ 4s�0

! 1
2

+
x�p
��t

9=
; ; i�0 =

1
2

8<
:
 
x�2

��t
+ 4s�0

! 1
2

� x�p
��t

9=
; ;

and s�0 satisfies the nonlinear, inhomogeneous diffusion equation

@s�0
@t

=
1
2

@2

@x�2

0
@
 
x�2

��t
+ 4s�0

! 1
2

1
A ;

s�0 � 9x��4t2 as x� ! 0+; s�0 ! 0 as x� ! +1; s�0 = 0 at t = 0:

As already noted, the solution to the full surface-source problem is self-similar and the solution
to this reduced problem is thus of the form s�0 = s�0(x

�=t
1
2 ).

3. The implant problem

3.1. FORMULATION AND INITIAL TRANSIENT

We now consider the solution to (1) subject to (3) and non-dimensionalise by writing

s = s=im; i = i=im; v = v=v�; t = Dit=X
2; x = x=X; F = F=im;

where X is a characteristic length scale of the initial distribution F (x). We then obtain the
non-dimensional problem (dropping overbars)

"�
@s

@t
= �"s+ iv;

@

@t
(!s+ v) = �

@2v

@x2 ;
@

@t
(s+ i) =

@2i

@x2 ;

@i

@x
= 0; v = 1 on x = 0;

@i

@x
! 0;

@v

@x
! 0 as x! +1; (30)

s = 0; i = F (x); v = 1 at t = 0;

where

� = Di=(kdLX
2); " = kdL=(kdRv

�); � = Dv=Di; ! = im=v
�

and

max
x�0

F (x) = 1:

Before we begin our analysis of (30), it is worth noting two integrals of the above system
which are constant in time. An elementary calculation shows that for all tZ 1

0
(i+ s� F (x)) dx = 0;

Z 1

0
x(v + !s� 1) dx = 0; (31)



Some moving-boundary problems arising from a model for solid-state diffusion 9

where (31)1 is simply a statement of conservation of impurity.
We note from (4) that ! > 1 (for ! < 1 no moving boundaries arise) and we shall again

take the limit � ! 0 followed by " ! 0. We note, however, that in this case the assumption
that � � 1 in fact has little bearing on the rest of the analysis. There are two time scales to
consider. The first is an initial transient with t = O(1), where t = "�t, on which negligible
diffusion occurs; the leading-order balance is

@s0

@t
= i0v0;

@

@t
(!s0 + v0) = 0;

@

@t
(s0 + i0) = 0;

with solution

s0 =
(1� exp((1� !F (x))t))F (x)

!F (x)� exp((1� !F (x))t)
; v0 = 1� !s0; i0 = F (x)� s0: (32)

For given x, the behaviour of these solutions as t ! +1 depends on whether !F < 1 or
!F > 1. Wherever!F < 1, the initial concentration of interstitials is less than the equilibrium
vacancy concentration, so that vacancies remain after these interstitials occupy substitutional
sites. From (32) we then have

!F < 1 s0 ! F; v0 ! 1� !F; i0 ! 0 as t! +1:

However, where !F > 1, the vacancies are all occupied before the impurity can all become
substitutional. From (32) we have

!F < 1 s0 ! 1=!; v0 ! 0; i0 ! F � 1=! as t! +1:

For t = O(1) the domain thus splits into distinct regions in which either v = O(1); i� 1 or
i = O(1); v � 1. These regions are separated by moving boundaries, with narrow transition
layers describing the behaviour close to such interfaces.

3.2. THE MOVING-BOUNDARY PROBLEM: FORMULATION

We now discuss the behaviour for t = O(1). In regions in which i� 1, which we shall denote
as v regions, we write

s � s0(x; t); v � v0(x; t); i � "~i0(x; t)

to yield

s0 = ~i0v0;
@s0

@t
= 0;

@v0

@t
= �

@2v0

@x2 ; (33)

whereas in regions in which v � 1 (i regions) we write

s � s0(x; t); v � "~v0(x; t); i � i0(x; t)

to give

s0 = ~i0v0;
@s0

@t
= 0;

@i0

@t
=

@2i0

@x2 ; (34)

Even though @s0=@t = 0 in both cases, we cannot conclude that s0 is fixed for all t. In
the transition layers at the moving boundaries s varies rapidly with t, so that s0 is modified
wherever these interfaces move.
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We now determine the behaviour in these transition layers and therefore obtain conditions
on (33) and (34) at the moving boundaries. We again define z by x = q(t; ") + "

1
2 z and write

q � q0(t); s � s
y
0(z; t); v � "

1
2 v
y
0(z; t); i � "

1
2 i
y
0(z; t):

Assuming that �� "
1
2 , we then recover the system (19). Defining

S�(t) � lim
z!�1

s
y
0; S

+(t) � lim
z!+1

s
y
0

and, treating the case in which the region to the right of x = q is an i region and that to the
left a v region (the results for the reverse case follow in an obvious fashion), we observe that
matching implies

�! _q0(s
y
0 � S+) = �

@v
y
0

@z
; � _q0(s

y
0 � S+) =

@i
y
0

@z
: (35)

The solution to (35) may be written in terms of parabolic cylinder functions:
(i) S� > S+, which requires _q0 > 0.

v
y
0 =

�
!

�
(S� � S+)

� 1
2

D�+1(�)=D�(�);

i
y
0 = S�D��1(�)=

�
!

�
(S� � S+)

� 1
2

D�(�);

with s
y
0 = i

y
0v
y
0; � = �S�=(S� � S+) and � = �

�
!

�
(S� � S+)

� 1
2

_q0z:

(ii) S� < S+, which requires _q0 < 0.

v
y
0 = S+D��1(�)=

�
�

!
(S+ � S�)

� 1
2

D�(�);

i
y
0 =

�
�

!
(S+ � S�)

� 1
2

D�+1(�)=D�(�);

with s
y
0 = i

y
0v
y
0; � = �S+=(S+ � S�) and � = �

�
!

�
(S+ � S�)

� 1
2

_q0z:

The profiles in the transition layers thus depend on the direction in which the interface is
moving.

We are now in a position to write down the moving-boundary problem. For simplicity, we
shall mainly discuss the case in which F is monotonic increasing and bounded, being such
that (after the initial transient) there is a single vacancy region adjacent to the surface. We note
that this implies that F (+1) = 1 > 1=!. An implant of this form is illustrated in Figure 2.
In practice, implant concentrations will decrease back to zero further into the semiconductor
and we shall mention the behaviour of such cases later. In Figure 3 we illustrate the vacancy,
interstitial and substitutional profiles as well as the moving boundary and transition layer, by
means of a numerical solution of (30). By matching with (35) we find that

_q0((s0)
� � (s0)

+) =

�
@i0

@x

�+
;

(36)

_q0((s0)
� � (s0)

+) = ��
�
@v0

@x

��
:
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Figure 2.

Figure 3.

We now have the following moving-boundary problem for i0 and v0

@v0

@t
= �

@2v0

@x2 ; (37)

v0 = 1� !F (x) at t = 0; v0 = 1 on x = 0; v0 = 0 on x = q0(t);

for x < q0(t), and

@i0

@t
=

@2i0

@x2 ;

i0 = F (x)� 1=! at t = 0; i0 = 0 on x = q0(t); (38)

i0 ! 1� 1=! as x! +1;

for x > q0(t). From (36) we see that

�

�
@v0

@x

��
= �!

�
@i0

@x

�+
: (39)
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Equations (37), (38) and (39) form the complete problem for i0; v0 and q0.
We note that we can thus solve for i0; v0 and q0 independently of s0, which is determined

from

@s0

@t
= 0 for x < q0(t) and x > q0(t);

s0 = F (x) for x < q0(0) and s0 = 1=! for x > q0(0) at t = 0; (40)

(s0)
+ = (s0)

� � 1
_q0

�
@i0

@x

�+
;

the final condition of which shows that the substitutional profile is not constant in time.
The outer substitutional profile thus evolves in a curious way, the only point for which
@s0=@t is non-zero being x = q0(t). Hence the substitutional concentration at a point only
changes if q0(t) visits that point. We also note that the outer substitutional concentration s0 is
discontinuous at the boundary, with the jump in the concentration being proportional to the
slope of the interstitials at the right of the front (or, from (39), the slope of the vacancies at
the left of the front). Since (@i0=@x)

+ is positive, s0 is larger at values of x just visited by
q0(t) than at values about to be visited, whatever the sign of _q0, which is to be expected. We
now discuss such behaviour in slightly more detail and then consider some illustrative special
cases.

(i) _q > 0.

If _q > 0 for all t, then clearly (s0)
+ � 1=! and from (40)2 it follows that (s0)

� > (s0)
+

(the condition that _q0 > 0 for (s0)
� > (s0)

+ is also required by (35), as noted above). The
substitutional profile has the form

s0(x; t) =

8>><
>>:
F (x) for 0 < x < q0(0),

1=! +
1
_q0

�
@i0

@x

�
(x; q�1

0 (x)) for q0(0) < x < q0(t),

1=! for x > q0(t),

(41)

where t = q�1
0 (x) is the time at which the moving boundary crosses the point x.

(ii) _q0 < 0.

We now have (s0)
� = F (q0) and (s0)

+ > (s0)
�. The substitutional profile is given by

s0(x; t) =

8>><
>>:
F (x) for 0 < x < q0(t),

F (x)� 1
_q0

�
@i0

@x

�
(x; q�1

0 (x)) for q0(t) < x < q0(0),

1=! for x > q0(0),

(42)

It is not, however, possible for _q0 to be negative for all t. The boundary condition v0 = 1
on x = 0 implies that eventually _q0 > 0 and that the solutions for i0; v0 and q0 converge to
the similarity solution of Section 3.3.1 as t ! +1. Under such circumstances there will be
values of x which are visited by q0(t) more than once and the resulting profile for s0 will
typically be rather complex.

A simple illustration of such behaviour, with _q0 < 0 for small time and _q0 > 0 for large
time, can be given by considering the further limit � ! 0. For sufficiently small t we have
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_q0 < 0 and the v region subdivides into three with

v0 � 1� !F (x) as � ! 0 with x = O(1); 0 < x < q0;

v0 � (1� !F (q0))(1� exp(� _q0(x� q0)=�)) as � ! 0 with x = q0(t) +O(�);

together with a boundary layer x = O(�
1
2 ) at the surface. The i region then decouples, with

(39) implying that as � ! 0

!
@i0

@x
� � _q0(1� !F (q0)) on x = q0(t); s0 � 1=! for x > q0(t): (43)

At some finite value of t the moving boundary x = q0 reaches the surface x = 0 (or, more
precisely, q0 becomes of O(�)) and then on the much slower time scale T = �2t moves back
into the semiconductor, with as � ! 0

v0 � 1� x=q0(T )

i0 � (1� 1=!) erf(X=2
p
T ) for X = O(1); where X = �x;

for T = O(1), and with

q0 �
p
�T=(! � 1);

so that _q0 > 0.

3.3. THE MOVING-BOUNDARY PROBLEM: SIMILARITY SOLUTIONS

3.3.1. F (x) � 1

In this section we shall give two simple similarity solutions to the moving-boundary problem,
the first corresponding to the special case in which F (x) � 1 in (37)–(39). In both cases the
similarity variable is � = x=

p
t.

We write q0(t) = �
p
t and it is thus clear that _q0 > 0. The solution is then given by

s0 =
1
!
+

2(! � 1)p
��!

exp(��2=4)
erfc(�=2)

; v0 = 1� erfc(x=2
p
�t)

erf(�=2
p
�)

;

for x < �
p
t and

s0 = 1=! ; i0 = (1� 1=!)(1� erfc(x=2
p
t)= erfc(�=2)) ;

for x > �
p
t. The constant � is determined by

(! � 1) exp(�2=4�) erf(�=2
p
�) =

p
� exp(�2=4) erfc(�=2):

As already noted, this solution describes the behaviour in the limit t! +1 for more general
initial conditions.

3.3.2. An infinite-domain problem

We now consider a set of boundary and initial conditions which differ from the semi-infinite-
domain problems discussed above. The similarity solutions which result have a number of
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interesting features and the results are instructive with respect to the two-dimensional problem
discussed later. Specifically, we replace the boundary and initial conditions in (5) by

v ! 1; i! 0 as x! �1; v ! 1; i! 1 as x! +1;

s = 0; v = 1; i = F (x) at t = 0;

and we take F (x) to be

F (x) =

�
0 for x < 0,
1 for x > 0.

(44)

and again we assume ! > 1. Following the initial transient, we then have for t = O(1) the
following moving-boundary problem. For �1 < x < q0(t) there is a v region with i � 1
and

@s0

@t
= 0;

@v0

@t
= �

@2v0

@x2 ;

v0 ! 1 as x! �1; v0 = 0 on x = q0(t); (45)

while in q0(t) < x < +1 we have an i region with v � 1 and

@s0

@t
= 0;

@i0

@t
=

@2i0

@x2 ;

i0 = 0 on x = q0(t); i0 ! 1� 1=! as x! +1; (46)

The problem is completed by the moving-boundary condition (39). Writing q0(t) = '
p
t, we

then obtain the following similarity solution

v0 =
erf('=2

p
�)� erf(x=2

p
�t)

erfc(�'=2
p
�)

; x < '
p
t; (47)

and

i0 = (1� 1=!)
erf(x=2

p
t)� erf('=2)

erfc('=2)
; x > '

p
t ; (48)

with ' determined by

(! � 1) exp('2=4�) erfc(�'=2
p
�) =

p
� exp('2=4) erfc('=2) : (49)

The substitutional concentrations behind and ahead of the front are again related by (40)2 and
here we have

(s0)
+ = (s0)

� � 2(1� 1=!)p
�'

exp(�'2=4)
erfc('=2)

:

From (49) we see that ' = 0 for � = �c, where �c = (! � 1)2, so the boundary is stationary
when the parameters � and ! satisfy this relationship. It is easily shown that for � < �c we
have ' < 0, so the front moves to the left, while for � > �c we have ' > 0, the front moving
to the right.

If ' > 0, then (s0)
+ = 1=! and

(s0)
� =

1
!
+

2(1� 1=!)p
�'

exp(�'2=4)
erfc('=2)

:
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We then have

s(x; t) =

8<
:

0 for x < 0,
(s0)

� for 0 < x < '
p
t,

1=! for x > '
p
t.

(50)

If ' < 0 then (s0)
� = 0 and

(s0)
+ = �2(1� 1=!)p

�'

exp(�'2=4)
erfc('=2)

and

s(x; t) =

8<
:

0 for 0 < x < '
p
t;

(s0)
+ for '

p
t < x < 0,

1=! for x > 0.
(51)

It follows from (49) that

' �
p
�

2!(! � 1)
(� � �c) as � ! �c:

Letting � ! �+c , we thus have that

(s0)
� � 4(! � 1)2

�(� � �c)
;

while as � ! ��c we have

(s0)
+ � 4(! � 1)2

�(�c � �)
:

Hence, in the limit � ! �c, the substitutional concentration blows up at the front like
1=(� � �c). If the front moves slowly, many interstitials are able to become substitutional
in the neighbourhood of the front, and there is a build-up of substitutionals behind the front
whose concentration is inversely proportional to the front speed. A more detailed analysis of
this behaviour requires consideration of the case � = �c + "

1
3, where  = O(1), for which

the interior-layer behaviour is no longer given by (35). In this case the outer solutions are

x < 0 : v0 = erf(�x=2
p
�ct);

x > 0 : i0 = (1� 1=!) erf(x=2
p
t);

while the inner scalings are (cf. Section 2.4)

x = "
1
3x�; s � "�

1
3 s�0(x

�; t); v � "
1
3 v�0(x

�; t); i � "
1
3 i�0(x

�; t): (52)

We then obtain

�cv
�
0 � !i�0 = �(! � 1)x�=

p
�t+ =2!

(higher-order matching is required in order to determine the second term on the right-hand
side of this expression) and, using s�0 = i�0v

�
0 , we find that s�0 satisfies the somewhat unusual

nonlinear diffusion problem

@s�0
@t

=
1

2!
@2

@x�2

0
@
 �

! � 1p
�t

x� � 

2!

�2

+ 4!(! � 1)2s�0

! 1
2

1
A ;

s�0 ! 0 as jx�j ! 1; s�0 = 0 at t = 0; (53)
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Figure 4.

withZ 1

�1
s�0 dx� = 2(! � 1)

p
t=!

p
�;

Z 1

�1
x�s�0 dx� = t=2!2:

The scaling s = O("�
1
3 ) in (52) indicates the unusual nature of the substitutional profile, with

a sharp peak close to x = 0. A numerical solution for � = �c is given in Figure 4.

3.4. MORE REALISTIC IMPLANTS

The special cases already discussed give some indication of the variety of possible behaviours
which can occur. Here we briefly consider the more realistic case in which the implant profile
F (x) in (30) decays to zero as x ! +1 and there are two v regions (0 < x < q0(t) and
Q0(t) < x <1, say). We note that, even if F (x) is such that there is no v region near x = 0
at t = 0, there will be one for t > 0 because of the surface-boundary condition on v, and one
i region (q0(t) < x < Q0(t)). Since the i region contains at t = 0 only a finite number of
interstitials, the moving boundaries q0 and Q0 will meet at some finite time, at leading order
the interstitials all having become substitutional. For times greater than this we have i � 1
for all x and at leading order for t = O(1) we have simply

@v0

@t
= �

@2v0

@x2 ;
@s0

@t
= 0; (54)

without moving boundaries present. The substitutionals then redistribute on the much longer
time scale � = O(1), where � = "t, with

v0 = 1;
@s0

@�
=

@2s0

@x2 : (55)

Our remaining comments will concern the further limit � ! 0, which is again instructive
in this context. Taking the limits " ! 0 and � ! 0, we obtain at leading order the moving-
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boundary problem (cf. (43))

@i0

@t
=

@2i0

@x2 for q0(t) < x < Q0(t);

i0 = 0; !
@i0

@x
= � _q0(1� !F (q0)) at x = q0(t) ;

i0 = 0; !
@i0

@x
= � _Q0(1� !F (Q0)) at x = Q0(t) ;

i0 = F (x)� 1=! for q0(0) < x < Q0(0) at t = 0 ;

(56)

with _q0 < 0; _Q0 > 0. This formulation holds as long as q0 > 0. If q0 reaches zero, the
conditions on x = q0(t) are replaced by

i0 = 0 at x = 0: (57)

It should again be stressed that in the limit " ! 0 with � = O(1), q0 remains positive.
However, taking the limits " ! 0 followed by � ! 0, we find that q0 may become of O(�)
in finite time, in which case the condition (57) becomes appropriate. When q0 = O(�), it
follows from (40) that s0 becomes of O(1=�) in a region of thickness O(�), indicating that
substitutional concentrations close to the surface become very high; this type of, apparently,
uphill diffusion near the surface also arises in other contexts.

While the conditions in (56) remain valid (i.e. while q0 > 0), it is readily shown thatZ Q0(t)

q0(t)
(i0 + 1=! � F (x)) dx =

Z Q0(t)

q0(t)
x(i0 + 1=! � F (x)) dx = 0 ; (58)

while, if (57) becomes appropriate, we haveZ Q0(t)

0
x(i0 + 1=! � F (x)) dx = 0 : (59)

The significance of these expressions is the following. As t ! 1, it is found that i0 decays
to zero exponentially fast and q0(t) and Q0(t) approach constant values q0(1) and Q0(1).
These values can be calculated exactly from (58) and (59), whereby we have

q0(1) > 0;
Z Q0(1)

q0(1)

(1=! � F (x)) dx =

Z Q0(1)

q0(1)

x(1=! � F (x)) dx = 0

or

q0(1) = 0;
Z Q0(1)

0
x(1=! � F (x)) dx = 0 :

On the longer time scale T = O(1), with T = �t, we have (cf. (54))

@v0

@T
=

@2v0

@x2 ;

v0 = 1 at x = 0; v0 ! 1 as x! +1;

v0 = 0; 0 < x < Q0(1) at T = 0;

v0 = 1� !F (x); Q0(1) < x <1 at T = 0;
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Figure 5.

where there are no moving boundaries and for brevity we shall henceforth treat only the case
q0(1) = 0. For x = O(1) we then have

s0 = 1=!; 0 < x < Q0(1); s0 = F (x); Q0(1) < x <1; (60)

with, as already noted, a region of very high substitutional concentration close to x = 0. The
substitutional impurity thus adopts a highly distinctive profile, including a region of almost
constant concentration, given in dimensional terms by s � v� (the equilibrium vacancy
concentration). Finally, on the even longer time scale � = O(1) we have (55) subject to

s0 =

(Z Q0(1)

0

�
F (x)� 1

!

�
dx

)
�(x) +

1
!
H(Q0(1)� x)

+ F (x)H(x�Q0(1)) at � = 0 ;
@s0

@x
= 0 at x = 0 ; s0 ! 0 as x! +1 ;

where H is the Heaviside step-function and the initial condition follows from (60), the �-
function representing the impurity located in the narrow high-concentration region near the
surface (in which substitutional diffusion commences when t = O(�2=")).

4. Two-dimensional surface-source problem

4.1. FORMULATION AND BOUNDARY LAYER

This section is concerned with two-dimensional diffusion under a mask edge. This problem
has been discussed under a different limit in Meere et al. [5], where it was shown that the
dissociative mechanism can produce unusual types of diffused profiles exhibiting a ‘bird’s
beak’. We shall see here that the current limit also leads to some unusual profiles, but of
a significantly different type. Such differences are potentially of value in the assessment of
diffusion mechanisms and parameter values experimentally.
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Figure 5 illustrates results from the numerical solution to the two-dimensional problem
(61) by giving interstitial profiles as functions of x for various values of y. A particularly
noteworthy, and somewhat surprising, feature of these is that for ! = 3 the profiles (c)–
(e) exhibit interior maxima beneath the mask; by contrast, for ! = 0:75 the profiles are
monotonically decreasing. This type of behaviour will be explained by the asymptotic analysis
given below.

The relevant two-dimensional initial-boundary-value problem takes the form

s = iv;
@

@t
(!s+ "v) = "�r2v;

@

@t
(s+ "i) = "r2i;

v = 1; i = 1 on x = 0; y > 0; v = 1;
@i

@x
= 0 on x = 0; y < 0;

v ! 1; i! 0 as x! +1 or y ! �1; (61)

@v

@y
! 0;

@i

@y
! 0 as y ! +1; v = 1; i = 0 at t = 0:

Here x = 0 is again the semiconductor surface, with y > 0 representing a window which
contains an impurity source and y < 0 being covered by a mask which is impermeable to
impurity. The behaviour as y ! +1 is given by the one-dimensional problem of Section 2.
A more detailed description is given in [5]. The solution takes the self-similar form

s = s(x=t
1
2 ; y=t

1
2 ); i = i(x=t

1
2 ; y=t

1
2 ); v = v(x=t

1
2 ; y=t

1
2 ):

A boundary layer occurs near x = 0 for y > 0 with, as in Section 2.1,

x = "
1
2 bx; s � bs0(bx; t); v � bv0(bx; t); i � bi0(bx; t);

the leading-order solution being given by (9)–(11). The results (12)–(13) again describe the
matching out of the boundary layer, so we must also distinguish the cases � > ! and � < !

here.

4.2. � > !

We again start with the simpler case in which moving boundaries do not arise. In x = O(1),
s and i are exponentially small and, writing v � v0(x; y; t), we have

@v0

@t
= �

 
@2v0

@x2 +
@2v0

@y2

!
;

v0 = 1� !

�
on x = 0; y > 0; v0 = 1 on x = 0; y < 0 ;

v0 ! 1 as x! +1 or y ! �1;
@v0

@y
! 0 as y ! +1;

v0 = 1 at t = 0 ;

with solution

v0 = 1� !p
��

Z 1

x=2
p
�t

e��
2
�

1 + erf
�
y

x
�

��
d�: (62)
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There is a further inner region close to the mask edge with

x = "
1
2 bx; y = "

1
2 by; s � s0(bx; by; t); v � v0(bx; by; t); i � i0(bx; by; t); (63)

with

s0 = i0v0;
@s0

@t
= r2i0; r2(!i0 � �v0) = 0;

v0 = 1; i0 = 1 on bx = 0; by > 0; v0 = 1;
@i0

@bx = 0 on bx = 0; by < 0;

@v0

@by ! 0;
@i0

@by ! 0 as by ! +1; (64)

v0 � 1� !

��

�
� +

�

2

�
; i0 ! 0dsr̂ ! +1; � 6= �

2
;

s0 = 0 at t = 0;

where bx = br cos �; by = br = sin �.

4.3. � < !

4.3.1. The moving-boundary problem

In x; y = O(1) the following moving-boundary problem may be deduced in a manner similar
to those of the previous sections; we denote the moving boundary by t = �(x; y).

i region (t > �(x; y))

s � "~s0(x; y; t); v � "~v0(x; y; t); i � i0(x; y; t):

@i0

@t
=

@2i0

@x2 +
@2i0

@y2 ; (65)

i0 = 1� �=! on x = 0; y > 0;

i0 � (1� �=!)(1� erf(x=2
p
t)= erf(�=2)) as y ! +1; 0 < x < �

p
t;

where � is given by (26), with

~s0 = i0~v0;
@~s0

@t
= 0 : (66)

v region (t < �(x; y))

v � v0(x; y; t); s and i are exponentially small:

@v0

@t
= �

 
@2v0

@x2 +
@2v0

@y2

!
;

v0 = 1 on x = 0; y < 0; (67)

v0 ! 1 as x! +1 or y ! �1;

v0 � 1� erfc(x=2
p
�t)= erfc(�=2

p
�) as y ! +1; x > �

p
t :
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Figure 6.

We now use ( )+ and ( )� to denote the limits as the moving boundary is approached from
within the v region and the i region, respectively. The moving-boundary conditions which
couple (65) and (67) and complete the specification of the moving-boundary problem are then

(i0)
� = 0; (v0)

+ = 0; �
�
@v0

@n

�+

= �!
�
@i0

@n

��
on t = �(x; y); (68)

where @
@n
� r�

jr�j � r denotes the outward normal derivative. Finally, we also have

(~s0)
� = �(r� � ri0)�; (69)

which may alternatively be written in the form

Vn(~s0)
� = �

�
@i0

@n

��
; (70)

whereVn = 1=jr�j denotes the outward normal velocity of the moving boundary. A schematic
of a possible form for the moving boundary is indicated in Figure 6. It should be noted that
the moving boundary meets the surface (x = 0) at the edge of the mask (x = 0; y = 0).

Before proceeding to describe the remainder of the asymptotic structure, we first note a
reformulation of the moving-boundary problem as a nonlinear diffusion problem and then
describe its local behaviour near the mask edge.

If we introduce

c = !i0 � �v0;

we obtain the fixed-domain problem

@

@t
(�(c)) = r2c;

c = ! � � on x = 0; y > 0; c = �� on x = 0; y < 0; (71)
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c! �� as x! +1 or y ! �1;

@c

@y
! 0 as y ! +1; c = �� at t = 0;

where

�(c) =

�
c c > 0;

c=� c < 0;

is a piecewise linear function. If (71) is solved, then the moving boundary is given by the
concentration contour c = 0. In the special case � = 1, (71) is linear and has solution

c =
!p
�

Z 1

x=2
p
t
e��

2
�

1 + erf
�
y

x
�

��
d�� 1 :

The local behaviour close to x = 0, y = 0 will play an important role in the remainder of
the analysis. It is readily shown that

�v0 � !i0 � � � !(� + �=2)=� + (t)r cos � (72)

as r ! 0, where x = r cos �, y = r sin � and (t) = 0t
� 1

2 , the constant 0 being determined
globally. The moving boundary thus takes the form

� � �0 + �0=(!t
1
2 ) r sin(��=!) as r ! 0 ; (73)

where

�0 = �(�=! � 1
2) :

The angle �0 at which the moving boundary comes into the mask edge is thus completely
determined by the local analysis. We note that, as �=! ! 1�, the window � = �=2 is
approached, whereas for �=! ! 0+ the mask � = ��=2 is approached. The schematic of
Figure 6 corresponds to the case � < 2! in which the moving boundary bends underneath the
mask.

Using self-similarity, we deduce from (66) that

~s0 = ~s0(�) ;

and, using (69) and (73), we may show

~s0 � 2�2
0 sin2(��=!)=f!2(� � �0)

3g as � ! �+0 : (74)

This ‘pile-up’ of substitutionals just behind the moving boundary is a consequence of the
velocity of the boundary tending to zero as r ! 0 (cf. Section 3.3.2). We have

Vn � � sin(��=!)0r
2=(2!t

3
2 ) as r ! 0 : (75)

The fact that ~s0 becomes unbounded �! �0 indicates the need for an additional region close
to � = �0, which we discuss next.

4.3.2. Other regions

There are three regions which we have not described so far. The transition layer located about
the moving boundary is, away from the mask edge, one-dimensional at leading order and is



Some moving-boundary problems arising from a model for solid-state diffusion 23

thus again of the form (21)–(23). The remaining two regions need to be discussed in more
detail. Both are close to the mask edge and the first relates to the substitutional pile-up just
referred to, the relevant scalings being

� = �0 + "
1
5�; r = "

1
5 r� with

s � "
2
5 s�0(r

�; �; t); v � "
1
5 v�0(r

�; �; t); i � "
1
5 i�0(r

�; �; t)

and we have

s�0 = i�0v
�
0 ; !

@s�0
@t

=
�

r�2

@2v�0
@�2 ;

@s�0
@t

=
1
r�2

@2i�0
@�2 :

By appropriate matching (including at O("
1
5 ) – we omit details) we then find that

�v�0 � !i�0 = �!�=� + 0r
� sin(��=!)=t

1
2 ;

so we have

i�0 =
1

2!

8<
:
 �

!

�
�� 0r

�

t
1
2

sin(��=!)
�2

+ 4!�s�0

! 1
2

+
!

�
�� 0r

�

t
1
2

sin(��=!)

9=
; ;

v�0 =
1

2�

8<
:
 �

!

�
�� 0r

�

t
1
2

sin(��=!)
�2

+ 4!�s�0

! 1
2

� !

�
�+

0r
�

t
1
2

sin(��=!)

9=
; ;

together with the nonlinear diffusion problem (cf. (53))

@s�0
@t

=
1

2!r�2

@2

@�2

0
@
(�

!

�
�� 0r

�

t
1
2

sin(��=!)
�2

+ 4!�s�0

) 1
2

1
A ;

s�0 ! 0 as j�j ! 1; s�0 = 0 at t = 0: (76)

The solution to (76) is of the form

s�0 = s�0(�; t=r
�2):

We also note the integral results

Z 1

�1
s�0 d� =

t

�r�2 ;

Z 1

�1
�s�0 d� =

20t
1
2

!r�
sin(��=!) :

As t! 0, or equivalently as r� ! +1, the solution to (76) takes the form

s�0 � t
3
2 f(z�)=r�3 where z� = r�

3
2 (�� �0r

� sin(��=!)=(!t
1
2 ))t�

3
4

for z� = O(1), which matches into the transition layer about the moving boundary, and the
form

s�0 � 2�2
0 sin2(��=!)=(!2�3) (77)
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for � = O(r�=t
1
2 ) with t

1
2�=r� > �0 sin(��=!)=!, which matches with (74). We note that

(77) holds as � ! +1 for all t > 0. As t ! +1, or equivalently as r� ! 0, we have
self-similar behaviour of the form

s�0 � t
2
3 g(r�

2
3�=t

1
3 )=r�

4
3 for � = O(t

1
3 =r�

2
3 ) (78)

where g(�) is an even function of �, which matches into the final region which we now discuss.
This is the mask-edge region in which the scalings (63) again hold, as does (64), except

that the condition as br! +1 is replaced by

v0 � 1� !(��)�1(� + �=2); i0 ! 0 as br ! +1; ��=2 � � < �0 ;
(79)

v0 ! 0; i0 � ��1(� + �=2)� �=! as br! +1; �0 < � < �=2 :

The far-field behaviour of s0 is of some interest, s0 becoming exponentially small as br ! +1
for ��

2 � � < �0 and �0 < � < �
2 , but only algebraically small for � = �0, corresponding to

matching with (78), with

s0 � t
2
3 g(br 2

3 (� � �0)=t
1
3 )=br 4

3 as br ! +1 with � � �0 = O(br� 2
3 ) : (80)

4.4. DISCUSSION

In the limit discussed in [5], corresponding in the current notation to!� 1 with " = O(1) (less
restrictively, the results of [5] also apply for "� 1 provided that "� 1=!), impurity contours
stretch a substantial distance beneath the mask (in the �y direction), leading to ‘bird’s-beak’
profiles characteristic of greatly enhanced lateral diffusion. By contrast, as Figure 6 indicates,
the current limit can lead to contours which curve back towards the edge of the mask. Such
results are confirmed by numerical solution of the full model and our main purpose in this
section is to give some indication of how these two apparently contradictory types of behaviour
(in comparison with linear diffusion, enhanced and reduced impurity concentrations along the
bottom of the mask) can arise from the same mechanism.

As indicated in [5], a complete description of the transition between the two cases requires
consideration of a number of different relationships between the two small parameters " and
1=!, and we shall not pursue the details. However, it is possible to show that the impurity
contours at high concentration are qualitatively similar to those of [5] (although the details
of the limit problems may differ) whenever " and 1=! are both small, no matter how much
smaller the former is than the latter. Therefore by analysing the mask-edge region bx; by = O(1)
introduced above in the limit ! !1, we will be able to gain understanding of the transition.

We thus consider the behaviour of (64), with the condition as br ! +1 replaced by (79),
in the limit ! !1. The details are rather complicated, the asymptotic structure subdividing
into seven regions, a number of which are governed by unusual types of non-local nonlinear
diffusion problem. However, for the purposes of this discussion it suffices to describe one of
these regions only. It is convenient first to introduce the small parameter � = �=!.

The relevant region is a boundary layer with scalings bx = O(1); bY = O(1)where bY = �by,
with bY < 0, and, writing s0 � �S0(bx; bY ; t) as � ! 0, we obtain the surface-concentration-
dependent nonlinear diffusion problem

@S0

@t
=

1
2

@2

@bx2

0
B@
8<
:
 bx
�(�bY ) + �(bY ; t)� 1

!2

+ 4S0

9=
;

1
2

1
CA ;
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S0 = �(bY ; t); @S0

@bx = ��(bY ; t)
�(�bY ) at bx = 0 ; (81)

S0 ! 0 as bx! +1 ; S0 = 0 at t = 0 ;

which determines the surface concentration�(bY =t 1
2 ) as well as S0(bx=t 1

2 ; bY =t 1
2 ). For the other

variables, we write v0 � V0(bx; bY ; t); i0 � �I0(bx; bY ; t) as � ! 0, with

S0 = I0V0; I0 = V0 + ��1bx=(�bY ) + �� 1 :

We note from (81) thatZ 1

0
S0 dbx = t=�(�bY ); Z 1

0
bxS0 dbx = t : (82)

The problem (81) has the following asymptotic behaviour.
(i) As bY ! do,

� � t=(�2 bY 2) ; S0 � t=(�2 bY 2) ebe=�bY for bx = O(�bY ) : (83)

(ii) As bY ! �1, � becomes exponentially small and

S0 t
2
3 =(�bY ) 4

3 g((bx+ � bY )t� 1
3 (�bY ) 1

3 ) for bx = �(�bY ) +O(t
1
3 (�bY ) 1

3 ) : (84)

We may therefore deduce the following results, which hold for fixed t = O(1).
(i) For given small jbY j, S0 has its maximum at the surface bx = 0 and decays rapidly into the
semiconductor (see (83)). Impurity contours at high concentrations extend much further in
the �by direction than in the bx direction (cf. [5]). Contours with s = O(1) stretch a distance

�by = O(��
1
2 ) under the mask, though we omit details for this region.

(ii) For given large jbY j, S0 is exponentially small on the surface bx = 0 and has an interior
maximum close to the line bx = �(�bY ) (see (84)); this location is implicit in the integral
relations (82) and corresponds to taking the limit � ! 0 in � � �0.

It is possible to argue that the region r� = O(1) discussed in Section 4.3.2, in which � � �0

and where substitutional concentrations are relatively large, represents a rotation of the ‘bird’s-
beak’ effect occurring in [5] from immediately beneath the mask (i.e. from � = ��

2 ) to an angle
� = �0. As ! increases (and hence �0 decreases), the local maximum moves towards the mask,
and eventually the limit of [5] is recovered. The local pile-up of substitutional impurity arises
from the presence of vacancies made available through surface generation at the mask. In [5]
(where ! � 1; " = O(1)) sufficient impurities diffusing in that surface-generated vacancies
are consumed by impurity interstitials right up to the surface, so that the substitutional peak
occurs there. In the current case ("� 1; ! = O(1)) less impurity is present, so that vacancies
are able to diffuse further from the surface before encountering an interstitial (and, conversely,
interstitials are consumed by vacancies before they can reach the mask), leading to an offset
of the substitutional peak from the surface by an angle �0 + �=2 = ��=!.

5. Discussion

We first summarise some of the noteworthy features of the diffused profiles predicted by the
results obtained here.
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(1) Section 2.

In the surface-source problem there is a clear distinction between the caseDvv
� > Dii

� in
which the impurity concentration becomes negligible in the narrow surface region bx = O(1)
and the caseDvv

� < Dii
� in which the impurity penetrates much further and the substitutional

profile contains a region of almost constant concentration (given by (27)). If we vary the surface
concentration i�, the expression (27), in principle, provides a means of obtaining information
experimentally about parameters which are not susceptible to direct measurement. It is worth
emphasizing that a qualitative change in the form of the impurity profile is predicted as i� is
increased above Dvv

�=Di. We note that, although the dissociative mechanism is mediated by
vacancies, the impurity is thus able to diffuse much further when sufficiently few vacancies
are available (i.e. when v� < Dii

�=Dv), since interstitials are then able to penetrate further
before encountering a vacancy.

(2) Section 3.

In the implant case the moving boundaries can move in either direction and the qualitative
appearance of the substitutional profile (which exhibits regions of rapid variation around the
moving boundaries) depends strongly upon this. The results of Section 3.3.2 indicate the
possibility of very high substitutional concentrations close to a slowly moving interface; those
of Section 3.4 imply that the substitutional profile may exhibit high concentrations near the
surface with a region of almost constant concentration further in. These are very distinctive
types of profile and experimental results consistent with at least the latter are available.

(3) Section 4.

We have shown here that the ‘bird’s-beak’ profiles of [5] (which are similar to types
which are observed experimentally) do not occur for all the relevant parameter regimes for
the dissociative model. The substitutional profiles of Section 4.3 are again highly distinctive,
exhibiting a region of significantly enhanced concentration in a particular direction � = �0

close to the surface. Such predictions (as well as those indicated above) are potentially of
value in clarifying which diffusion mechanisms are operating in practice. For example, ‘bird’s-
beak’ structures appear to be much more robust for the kick-out mechanism (the other basic
substitutional-interstitial mechanism, analysed by asymptotic methods in Meere and King [6])
than for the dissociative. The alternative type of behaviour outlined in Section 4 does not occur
for kick-out and its observation would thus be indicative of the dominance of the dissociative
mechanism.

We conclude by noting that this paper appears to represent the first instance where
substitutional-interstitial models for solid-state diffusion have been formulated as moving-
boundary problems. While the moving-boundary problems derived here are of a fairly simple
type, it should be noted that the resulting formulations involve some important features
(notably the determination of the leading-order substitutional profile) which do not occur in
more familiar moving-boundary problems. Moving-boundary formulations are also applica-
ble to much wider classes of diffusion mechanism, though the resulting problems may be
significantly more complex (see [4]). The results of this paper open the way for the analysis
of these more complicated models.
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